Microbiology
Gene expression is regulated at many levels in bacteria. Figure 14.1 in your textbook displays a summary of regulatory mechanisms used to control gene expression. An overview of gene expression in bacteria can be found at (http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/ucm134359.htm). We have been discussing antibiotic resistance in bacteria; now let’s look at how this works on a molecular level. An operon is a group of genes that are regulated by one promotor. The expression of bacterial genes is controlled by the action of diffusible repressors and activators. Tetracycline is an antibiotic used to treat respiratory infections, infections of the skin, including acne, and infections of the genitourinary system. Over time however, many bacteria have become resistant to tetracycline and this antibiotic is no longer as effective as it once was. The mechanism often utilized by resistant strains is the synthesis and use of an efflux pump. While there are multiple types, in general, this pump consists of a membrane-spanning protein that extrudes the antibiotic from the cell. Since efflux pumps are energetically expensive to make, they are only produced when tetracycline is present. A repressor protein, TetR, has been identified and characterized in resistant strains. The efflux-pump is negatively controlled by TetR. TetR binds to the operator region when there is no tetracycline present. When tetracycline is present in the cell, it will bind to TetR and change the structure of TetR. TetR is released from the gene and the cell can produce the transmembrane protein needed to get rid of the antibiotic from inside the cell. When the antibiotic is gone, the repressor sits back on the gene. TetR gene transcription is inhibited by the repressor protein. Transcription and translation are controlled by regulatory proteins that can bind to activator binding sites in the presence of a key nutrient or other chemical in the cell. The cell is “sensing” the presence of the nutrients and the activator can then turn on genes in response. Let’s take a look at another example of operons. This video shows how the lac operon works. Combination_of_Switches_The_Lac_Operon.swf(675.139 KB)
In this discussion, you will describe an operon. There are many examples listed in Chapter 14, but if you want to choose an operon not described in your book, please ask me for approval. Make sure you do not pick the same operon as your classmates; we want to expose ourselves to as many regulation proteins and bacteria as possible.
In your initial discussion board post, please include the following:
1. Describe an operon, the regulatory proteins, the cellular process and the molecules being “sensed”.
2. Include details about the orientation of the genes and the promoter/operator sequences or activator binding site.
3. Provide details about the repressor/activator and inducer/inhibitor proteins.
4. Explain how the operon helps microbe survive and possibly thrive in its environment.
5. Include details about conditions that trigger expression of the gene(s).
6. Explain when this regulation occurs: During transcription, translation, or posttranslatation.
Initial Discussion Post
Your initial post should be at least 250 words and must substantively integrate the assigned readings from the module with proper APA style formatting// You may use aIDitional sources and materials as long as they are relevant to the discussion and cited properly.
Gene expression is regulated at many levels in bacteria. Figure 14.1 in your textbook displays a summary of regulatory mechanisms used to control gene expression. An overview of gene expression in bacteria can be found at (http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/ucm134359.htm). We have been discussing antibiotic resistance in bacteria; now let’s look at how this works on a molecular level. An operon is a group of genes that are regulated by one promotor. The expression of bacterial genes is controlled by the action of diffusible repressors and activators. Tetracycline is an antibiotic used to treat respiratory infections, infections of the skin, including acne, and infections of the genitourinary system. Over time however, many bacteria have become resistant to tetracycline and this antibiotic is no longer as effective as it once was. The mechanism often utilized by resistant strains is the synthesis and use of an efflux pump. While there are multiple types, in general, this pump consists of a membrane-spanning protein that extrudes the antibiotic from the cell. Since efflux pumps are energetically expensive to make, they are only produced when tetracycline is present. A repressor protein, TetR, has been identified and characterized in resistant strains. The efflux-pump is negatively controlled by TetR. TetR binds to the operator region when there is no tetracycline present. When tetracycline is present in the cell, it will bind to TetR and change the structure of TetR. TetR is released from the gene and the cell can produce the transmembrane protein needed to get rid of the antibiotic from inside the cell. When the antibiotic is gone, the repressor sits back on the gene. TetR gene transcription is inhibited by the repressor protein. Transcription and translation are controlled by regulatory proteins that can bind to activator binding sites in the presence of a key nutrient or other chemical in the cell. The cell is “sensing” the presence of the nutrients and the activator can then turn on genes in response. Let’s take a look at another example of operons. This video shows how the lac operon works. Combination_of_Switches_The_Lac_Operon.swf(675.139 KB)
In this discussion, you will describe an operon. There are many examples listed in Chapter 14, but if you want to choose an operon not described in your book, please ask me for approval. Make sure you do not pick the same operon as your classmates; we want to expose ourselves to as many regulation proteins and bacteria as possible.
In your initial discussion board post, please include the following:
1. Describe an operon, the regulatory proteins, the cellular process and the molecules being “sensed”.
2. Include details about the orientation of the genes and the promoter/operator sequences or activator binding site.
3. Provide details about the repressor/activator and inducer/inhibitor proteins.
4. Explain how the operon helps microbe survive and possibly thrive in its environment.
5. Include details about conditions that trigger expression of the gene(s).
6. Explain when this regulation occurs: During transcription, translation, or posttranslation
Initial Discussion Post
Your initial post should be at least 250 words and must substantively integrate the assigned readings from the module with proper APA style formatting// You may use aIDitional sources and materials as long as they are relevant to the discussion and cited properly.
Why Work with Us
Top Quality and Well-Researched Papers
We always make sure that writers follow all your instructions precisely. You can choose your academic level: high school, college/university or professional, and we will assign a writer who has a respective degree.
Professional and Experienced Academic Writers
We have a team of professional writers with experience in academic and business writing. Many are native speakers and able to perform any task for which you need help.
Free Unlimited Revisions
If you think we missed something, send your order for a free revision. You have 10 days to submit the order for review after you have received the final document. You can do this yourself after logging into your personal account or by contacting our support.
Prompt Delivery and 100% Money-Back-Guarantee
All papers are always delivered on time. In case we need more time to master your paper, we may contact you regarding the deadline extension. In case you cannot provide us with more time, a 100% refund is guaranteed.
Original & Confidential
We use several writing tools checks to ensure that all documents you receive are free from plagiarism. Our editors carefully review all quotations in the text. We also promise maximum confidentiality in all of our services.
24/7 Customer Support
Our support agents are available 24 hours a day 7 days a week and committed to providing you with the best customer experience. Get in touch whenever you need any assistance.
Try it now!
How it works?
Follow these simple steps to get your paper done
Place your order
Fill in the order form and provide all details of your assignment.
Proceed with the payment
Choose the payment system that suits you most.
Receive the final file
Once your paper is ready, we will email it to you.
Our Services
No need to work on your paper at night. Sleep tight, we will cover your back. We offer all kinds of writing services.
Essays
No matter what kind of academic paper you need and how urgent you need it, you are welcome to choose your academic level and the type of your paper at an affordable price. We take care of all your paper needs and give a 24/7 customer care support system.
Admissions
Admission Essays & Business Writing Help
An admission essay is an essay or other written statement by a candidate, often a potential student enrolling in a college, university, or graduate school. You can be rest assurred that through our service we will write the best admission essay for you.
Reviews
Editing Support
Our academic writers and editors make the necessary changes to your paper so that it is polished. We also format your document by correctly quoting the sources and creating reference lists in the formats APA, Harvard, MLA, Chicago / Turabian.
Reviews
Revision Support
If you think your paper could be improved, you can request a review. In this case, your paper will be checked by the writer or assigned to an editor. You can use this option as many times as you see fit. This is free because we want you to be completely satisfied with the service offered.